

2 | P a g e

WebOrion Cyber Security Solutions

Table of Contents:

1. Executive Summary………………………………………………………………. 3

2. Project Scope……………………………………………………………………….. 4

3. Findings Summary………………………………………………………………… 5

4. High Severity Findings and Details... .. 6

1. App is allowed to run on jail broken devices...…………………….....6

2. Insecure App transport security(ATS)……….…………………………..13

5. Medium Severity Findings and Details………………………………………18

1. Weak Hashing algorithm……………………………………………………..18

2. Weak random number generator algorithm……..……………………..21

3. Unsecure function used for memory allocation (Can cause memory

leak if not properly implemented)……………….………………………..24

6. Low Severity Findings and Details…………….……………………………...28

1. Use of banned API functions.……………………………………………….28

2. Unencrypted app preferences and local storage.……………………..31

3. Unsecure poor cryptographic protocols………………………………....36

7. Recommendations………………………………………………………………….38

3 | P a g e

WebOrion Cyber Security Solutions

1. Executive Summary:

Timesheet engaged to conduct vulnerability assessment and penetration

testing of its timesheet iOS application. The objective of this testing was

primarily to identify security vulnerabilities in the provided iOS application and

determine the level of depth that an attacker can penetrate, perform fraudulent

or misuse application functionality.

Business Criticality of the Application: HIGH

Severity based Vulnerability Distribution Impact to security

posture:

 3

2 4

4 | P a g e

WebOrion Cyber Security Solutions

2. Project Scope:

Property

Value

Application Name

iOS App

Description

This application provides collaborative

platform for making/editing Time-Sheet

and/or schedule of different tasks. And It

has connected with People Cloud!

IOS App package

name

Timesheet:

Credentials N/A

Test Scope Black-Box

Duration 6 Days (POC)

5 | P a g e

WebOrion Cyber Security Solutions

3. Finding Summary:

 Finding

CVSS

Severity

App is allowed to run on jail broken device!

 8.1

HIGH

Insecure app transport security (ATS) has

unsafe setting allowing the retrieval of content

over insecure channels.

 6.5

HIGH

Weak Hashing algorithms.

 5.5

 MEDIUM

Weak Random number generator.

 4.8

 MEDIUM

Use of insecure method to allocate memory!

 4.0

 MEDIUM

Used of banned API

methods/functions.

 3.6

LOW

Unencrypted app

preferences and storage

 3.4

LOW

Unsecure cryptography

protocols

 3.3

LOW

6 | P a g e

WebOrion Cyber Security Solutions

4. High severity findings and summary:

App is allowed to run on jail broken device!

Severity HIGH

OWASP MASVS: 8.1[R]

AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:L/A:L

Vulnerability App is able to run on jail broken device.

Finding

Description

Jail breaking is the process where the iOS system kernel is patched in order to remove

the software restrictions (the "jail") imposed on Apple devices. It permits root access

to the iOS file system, allowing the download of additional/pirated applications,

Extensions and themes that are unavailable through the official Apple App Store At

app level, jail breaking is used to obtain the access to all the apps sandboxes [e.g.

Documents, Library, tmp folders]. At device level, jail breaking is needed in order to

remove all the limitations imposed on the mobile by the carrier.

Method of

Identification

and

Validation

Manual

Affected

Resources

IOS App (../payload/)

Affected

Thing

IOS Application

Evidence Steps to reproduce :

Step 1: Go to source code of your IOS App.

Step 2: Run Xcode and open swift IDE OR you can use any Swift IDE to compile and

run this code.

7 | P a g e

WebOrion Cyber Security Solutions

Step 3: Just compile and run the swift program, Just make sure your phone is connected

with PC/Mac and properly configured to use iTunes.

Step 4: In a non-jail broken environment applications can only read and write inside

the application sandbox. If the application is able to access files outside of its sandbox,

it’s probably running on the jail broken device.

Step 5: Code:

if TARGET_IPHONE_SIMULATOR != 1

{

// Check 1 : existence of files that are common for jail broken devices

if FileManager.default.fileExists(atPath: “/Applications/Cydia.app”)

|| FileManager.default.fileExists(atPath: “/bin/bash”)

|| FileManager.default.fileExists(atPath: “/usr/sbin/sshd”)

|| FileManager.default.fileExists(atPath: “/etc/apt”)

|| FileManager.default.fileExists(atPath: “/private/var/lib/apt/”)

||

UIApplication.shared.canOpenURL(URL(string:”cydia://package/com.example.pack

age”)!)

{

 return true

}

// Check 2 : Reading and writing in system directories (sandbox violation)

let stringToWrite = “Jailbreak Test”

8 | P a g e

WebOrion Cyber Security Solutions

do

{

 try stringToWrite.write(toFile:”/private/JailbreakTest.txt”,

 encoding:String.Encoding.utf8)

 //Device is jail broken

 return true

}

catch

{

 return false

}

}

else

{

 return false

}

Step 6: Just run this code, If output shows Yes, then iPhone is Jail Broken if output

says no, then device is not jail broken!

Step 7: Navigate through /payload/Info.plist, if it is ASCII or UTF-8 Encoded, then

there is some problem. This file should be in binary format and cannot be opened by

any text editor directly.

9 | P a g e

WebOrion Cyber Security Solutions

Step 8: Just see the below Code,

NSBundle *bundle = [NSBundle mainBundle];

{

/* do something */

}

Step 9: Here see the above screenshot, this is how application looks like this.

10 | P a g e

WebOrion Cyber Security Solutions

Step 10: As soon as you click on sign in, the application uses Apple’s Touch ID/

FaceID, whichever is available for authentication purpose. After verifying this, you

can see the home page of the main application. It requires to app shall be connected

with PeopleSoft cloud.

11 | P a g e

WebOrion Cyber Security Solutions

Technical

Impact

Cyber criminals target jail broken devices to inject or to install malware much more

easily. Jail breaking is indeed the first step for simplifying the hacking procedures.

12 | P a g e

WebOrion Cyber Security Solutions

Business

Impact

This App is allowed to run in without sandbox environment, it means cyber criminals

and use this app and its resources to distribute malware and which directly affects

customer’s privacy.

Remediation

For Application Developers :-

Use Sandbox environment which is provided by Apple. App should be run with the

help of sandboxing. So it can use limited resources and doesn’t directly affects another

resources.

Set some restrictions in installing App, App should check strictly whether the device

is jail broken or not, and if it is so then app denied itself to run in devices.

For more information,

https://support.apple.com/en-in/HT201954

https://forums.developer.apple.com/thread/70603

https://forums.developer.apple.com/thread/66363

https://support.apple.com/en-in/HT201954
https://forums.developer.apple.com/thread/70603
https://forums.developer.apple.com/thread/66363

13 | P a g e

WebOrion Cyber Security Solutions

Insecure app transport security (ATS) has unsafe setting allowing the retrieval

of content over insecure channels.

Severity HIGH

 CVSS: 6.5

AV:L/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:L

Vulnerability Insecure app transport security (ATS)

Finding

Description

App Transport Security (ATS) enforces best practices in the secure connections

between an app and its back end. ATS prevents accidental disclosure, provides secure

default behavior, and is easy to adopt; it is also on by default in iOS 9 and OS X v10.11.

You should adopt ATS as soon as possible, regardless of whether you're creating a new

app or updating an existing one.

Method of

Identification

and

Validation

Manual

Affected

Resources

IOS App (./payload/Info.plist)

Affected

Thing

NSAllowsArbitraryLoads property

Evidence Steps to reproduce :

Step 1: Decompile IPA using comprehensive decompiler (Note: you can use any

decompiler of your choice. For this you can also use built in compiler that is already

in Xcode!)

Step 2: Extract source code folder (/Payload/FILES_LIST).

Step 3: Navigate through /payload/Info.plist file.

14 | P a g e

WebOrion Cyber Security Solutions

Step 4: Open using proper IDE like Plist Viewer.

Step 5: Now, you can see file is opened and go to NSAllowArbitraryLoads and

NSExceptionAllowsInsecureHTTPLoads, etc.

Step 6: Look at its value, it has Boolean type value. And for security reason, it marked

as True, Although it is for local host domain. But for other domain, this value

should be marked as false.

15 | P a g e

WebOrion Cyber Security Solutions

Step 7: See the highlighted code!

16 | P a g e

WebOrion Cyber Security Solutions

Technical

Impact

 NSAllowsArbitraryLoads: If set to YES, disables all ATS restrictions for all

network connections, apart from the connections to domains that you configure

individually in the optional NSExceptionDomains dictionary. Default value is NO.

 NSAllowsArbitraryLoadsForMedia: If set to YES, disables all ATS restrictions

for media that your app loads using the AV Foundation framework. Employ this key

only for loading media that are already encrypted, such as files protected by Fair

Play or by secure HLS, and that do not contain personalized information. Default

value is NO.

 NSAllowsArbitraryLoadsInWebContent: If set to YES, disables all ATS

restrictions for requests made from web views. This lets your app use an embedded

browser that can display arbitrary content, without disabling ATS for the rest of your

app. Default value is NO.

 NSExceptionAllowsInsecureHTTPLoads: If set to YES, allows insecure HTTP

loads for the named domain, but does not change Transport Layer Security (TLS)

requirements and does not affect HTTPS loads for the named domain. Default value

is NO.

 NSExceptionMinimumTLSVersion: Specifies the minimum TLS version for

network connections for the named domain, allowing connection using an older, less

secure version of Transport Layer Security.

Business

Impact

If it is allowed for other remote domains like, example.com; the property

NSExceptionAllowsInsecureHTTPLoads as well NSAllowsArbitraryLoads,

attacker can easily load arbitrary malicious code that can bypass all security checks

and leads to further attacks. Insecure method also cause serious security issue!

17 | P a g e

WebOrion Cyber Security Solutions

Remediation

For Application Developers :-

1. Simply change the value of property NSExceptionAllowsInsecureHTTPLoads

false, as it prevents to load content from unsafe Resources respectively.

2. And also change the property NSAllowsArbitraryLoads value to false. So it also

prevents to load content from random and unsafe sources. Which may protect

application.

 For more information,

https://developer.apple.com/documentation/security/preventing_insecure_network_co

nnections

https://developers.google.com/admob/ios/app-transport-security

https://developer.apple.com/documentation/bundleresources/information_property_li

st/nsapptransportsecurity

https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developer.apple.com/documentation/security/preventing_insecure_network_connections
https://developers.google.com/admob/ios/app-transport-security
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity
https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity

18 | P a g e

WebOrion Cyber Security Solutions

5. Medium severity findings and summary:

Weak hashing algorithm

Severity MEDIUM

CVSS: 5.5

AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N

Vulnerability Weak hashing algorithm

Finding

Description

The mobile application uses weak hashing algorithms. Weak hashing algorithms (e.g.

MD2, MD4, MD5 or SHA-1) can be vulnerable to collisions and other security

weakness, and should not be used when reliable hashing of data is required.

Method of

Identification

and

Validation

Manual

Affected

Resources

/payload/ios.app/BINARY_FILES

Affected

Parameter

N/A

Evidence
Steps to Reproduce:

Step 1: Go to the extracted source,

Step 2: Decompile binary file named _

Step 3: Now open with any assembler or debugger of your choice.

Step 4: Find following by searching this,

Binary match usage of 'CC_SHA1' function or method.

 Binary match usage of 'CC_MD5' function or method.

19 | P a g e

WebOrion Cyber Security Solutions

20 | P a g e

WebOrion Cyber Security Solutions

Technical

Impact

Weak cryptographic hashes are susceptible to attacks like rainbow table searches.

Hashing algorithms like MD5 and SHA-1 has been marked obsolete according to

latest coding standards. This risk the integrity of security critical data to be

compromised.

Business

Impact

It directly connected with internal core function of an IOS Application. If algorithm

is weak then it is vulnerable to rainbow table attack. While looking into application,

malicious hacker can easily exploit weak algorithms and all business logic of app can

be leaked due to this vulnerability. So that It is considered as critical business logic

weakness!

Remediation

For Application Developers,

Implement strong hash functions with strongest available algorithms. Like 3DES,

AES-128 Bit, etc.

For more information,

https://developer.apple.com/library/content/documentation/Security/Conceptual/cry

ptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html

https://developer.apple.com/library/content/documentation/Security/Conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/cryptoservices/GeneralPurposeCrypto/GeneralPurposeCrypto.html

21 | P a g e

WebOrion Cyber Security Solutions TimeSheet-Ag IOS Application

Weak Random number generator.

Severity MEDIUM

OWASP MASVS: 4.8 [L1, L2]

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

Vulnerability Weak random number generator

Finding

Description

Developers generally implement random number generators [RNGs] where the

random number is fully determined by the seed knowledge. This is the reason why

they are called pseudo-random number generators [PRNGs]. When it comes to

cryptography random numbers play a fundamental role in: key generation nonces

one-time pads salts in certain signature schemes.

Method of

Identification

and

Validation

Manual

Affected

Resources

RNGs(Random Number Generator)

Affected

Parameter

N/A

Evidence
Steps to Reproduce:

Step 1: Example Code for PSRNGs (Pseudo Random number generators) that is

basically weak.

Step 2: Code,

FILE *fp = fopen("/dev/random", "r");

if (!fp)

{

22 | P a g e

WebOrion Cyber Security Solutions

 perror("randgetter");

 exit(-1);

}

uint64_t value = 0;

int i;

for (i=0; i<sizeof(value); i++)

}

fclose(fp);

 Step 3: The below is the example of strong PRNGs.

 Step 4: Code,

uint8_t randomBytes[16];

int result = SecRandomCopyBytes(kSecRandomDefault, 16, randomBytes);

 NSLog(@"uuidStringReplacement is %@", uuidStringReplacement);

}

else

{

 NSLog(@"SecRandomCopyBytes failed for some reason");

}

Step 5: Implement strong RNGs, like above one!

23 | P a g e

WebOrion Cyber Security Solutions

Technical

Impact

Using standard PRNGs is a bad practice when implementing security mechanisms,

since the attacker may be able to guess the logic behind and predict the generated

random numbers. In this case the confidentiality and/or integrity of the vulnerable

app might be undermined. Under certain conditions this weakness may jeopardize

mobile application data encryption or other protection based on randomization. For

example, if encryption tokens are generated inside of the application and an attacker

can provide application with a predictable token to validate and then execute a

sensitive activity within the application or its backend.

Business

Impact

It directly connected with internal core function of an IOS Application. If RNGs

generate number that is not enough to strong, then while looking into application,

malicious hacker can easily exploit weak RNGs and all business logic of app can be

leaked due to this vulnerability. So that It is considered as critical business logic

weakness!

Remediation

For Application Developers,

Implement strong PSRNGs with strongest available algorithms. Like 3DES, AES-

128 Bit, etc. For function that generate PSRNGs, provide protected attribute to limit

function usage and prevent return wrong values.

https://developer.apple.com/documentation/security/1399291-secrandomcopybytes

https://developer.apple.com/documentation/security/ksecrandomdefault

https://developer.apple.com/documentation/security/1399291-secrandomcopybytes
https://developer.apple.com/documentation/security/ksecrandomdefault

24 | P a g e

WebOrion Cyber Security Solutions

Use of insecure function for memory allocation (If not implemented properly

then it causes buffer overflows and memory leak).

Severity MEDIUM

CVSS: 4.0

AV:L/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

Vulnerability Use of insecure function malloc() to allocate memory

Finding

Description

The mobile application uses malloc() function to allocate new memory instead of

more secure calloc(), thus endangering application privacy under certain

circumstances (e.g. if freed memory can be accessed by an attacker).

Method of

Identification

and

Validation

Manual

Affected

Resources

/payload/ios.app

Affected

Parameter

Memory allocation

Evidence
Steps to Reproduce:

Step 1: Go to extracted source,

Step 2: As done in earlier stage, open decompiled source with desired IDE as well

as Reverse engineering tool.

Step 3:

Open search bar, and search for malloc,

25 | P a g e

WebOrion Cyber Security Solutions -

Step 4: As you can see in the above image, the highlighted portion is for malloc(),

which is used to distribute and allocate memory but that has no protection against

buffer overflow, NULL pointer reference and memory leak, so it is risky to use this

function. And Apple has also made restricted use of this function.

Step 5: Instead of this, you can use Calloc(), which has same purpose but with

enforced security.

Step 6: calloc () provides secure allocation that has limited access to required

resources. So memory leaked don’t happen.

26 | P a g e

WebOrion Cyber Security Solutions

Step 7: Here how developer had declared this function, Any pointer or variable

outside this can access this malloc () property value arbitrarily. Which is very

dangerous.

Technical

Impact

When malloc () has incorrectly implemented, memory leak has happened and

memory leak reduces the performance of the computer by reducing the amount of

available memory. Eventually, in the worst case, too much of the available memory

may become allocated and all or part of the system or device stops working correctly,

the application fails, or the system slows down vastly due to thrashing.

27 | P a g e

WebOrion Cyber Security Solutions

Business

Impact

Due to memory leak, app may slow down and it stops running smoothly and if buffer

overflow also happened then it affects other app’s performance. So this problem can

be solved earlier as soon as possible.

Remediation

For Application Developers,

https://developer.apple.com/library/archive/documentation/Performance/Conceptual

/ManagingMemory/Articles/MemoryAlloc.html

https://developer.apple.com/library/archive/documentation/System/Conceptual/Man

Pages_iPhoneOS/man3/calloc.3.html

https://forums.developer.apple.com/thread/108319

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MemoryAlloc.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/MemoryAlloc.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/calloc.3.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/calloc.3.html
https://forums.developer.apple.com/thread/108319

28 | P a g e

WebOrion Cyber Security Solutions

6. Lower severity findings and summary:

Usage of banned API functions.

Severity LOW

CVSS: 3.6

AV:L/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N

Vulnerability Usage of banned API methods

Finding

Description

The mobile application uses some of the banned API functions. API functions are

usually banned for compelling security and privacy reasons and shall not be used for

better security.

Method of

Identification

and

Validation

Manual

Affected

Resources

API Methods

Affected

Parameter

N/A

Evidence
Steps to Reproduce:

Step 1: Go to the extracted source

,

Step 2: Decompile binary file named _ .

Step 3: Now open with any assembler or debugger of your choice.

Step 4: Find following by searching this,

 You will find following functions,

Alloca , memcpy, printf, Sprintf , strcat

Strcpy, strncpy, vsnprintf, gets

29 | P a g e

WebOrion Cyber Security Solutions

Scanf, sscanf, strlen, wcslen, etc.

30 | P a g e

WebOrion Cyber Security Solutions

Technical

Impact

Apple has banned some functions that are vulnerable or inappropriate for some app

architecture. So the use of these functions are restricted. And for performance

improvement and security reasons, use methods or functions that are suggested by

Apple itself. So it is not recommend to use banned methods or functions.

Business

Impact

As said in the technical impact, the trust of app may be decrease due to use of banned

things. And it directly effects on the app ratings and users. So we advised not to use

of these functions.

Remediation

For Application developers,

Refer following documentations for more information,

https://msdn.microsoft.com/en-us/library/bb288454.aspx

https://developer.apple.com/library/content/documentation/security/Conceptual/Sec

ureCodingGuide/Articles/BufferOverflows.html

https://developer.apple.com/library/content/documentation/security/Conceptual/Sec

ureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.h

tml#//apple_ref/doc/uid/TP40002415-CH1-SW1

https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://developer.apple.com/library/content/documentation/security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/content/documentation/security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/content/documentation/security/Conceptual/SecureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.html#//apple_ref/doc/uid/TP40002415-CH1-SW1
https://developer.apple.com/library/content/documentation/security/Conceptual/SecureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.html#//apple_ref/doc/uid/TP40002415-CH1-SW1
https://developer.apple.com/library/content/documentation/security/Conceptual/SecureCodingGuide/SecurityDevelopmentChecklists/SecurityDevelopmentChecklists.html#//apple_ref/doc/uid/TP40002415-CH1-SW1

31 | P a g e

WebOrion Cyber Security Solutions

Unencrypted app preferences and storage

Severity LOW

OWASP MASVS: 3.4 [L1, L2]

AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

Vulnerability Unsecure App preferences

Finding

Description

Preferences are pieces of information used to configure the appearance and behavior

of an app. Most of the preferences are persistently stored locally using the Cocoa

preferences system—known as the User Defaults system.

Method of

Identification

and

Validation

Manual

Affected

Resources

App Preferences

Affected

Parameter

N/A

Evidence Steps to Reproduce:

 Step 1: well

/payload _ .

Step 2: Open any Debugger of your choice.

Step 3: Open contents inside symbol table file respectively. And open in Debugger.

32 | P a g e

WebOrion Cyber Security Solutions -

 Step 4: See the below image,

 Step 5: See the highlighted _NSAttrib property! Which is for App preferences and

this is simply encoded without any encryption.

Step 6: app preferences file should be encrypted using high-grade encryption

algorithms to prevent unwanted behavior.

33 | P a g e

WebOrion Cyber Security Solutions

34 | P a g e

WebOrion Cyber Security Solutions TimeSheet-Ag IOS Application

Technical

Impact

Due to unencrypted or unsecure app preferences, malicious user can modify

preferences by changing or adding extra attributes that may cause unwanted behavior

of application and compromization of data! This may change application behavior.

Business

Impact

As described in technical impact, after changing application behavior, malicious user

can use for their purpose. And can inject code, and end user unaware of it. So he/she

didn’t notice this unknown behavior. And it further leads to compromise of sensitive

data of customer.

35 | P a g e

WebOrion Cyber Security Solutions -

Remediation

For Application Developers,

Encrypt files that stores Default app preferences and/or configurations with

strongest possible algorithm to protect user preferences.

For more information,

https://developer.apple.com/documentation/appkit/nscolor/1524856-controlcolor

https://developer.apple.com/documentation/appkit/nstextfield

https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/enc

rypting_your_app_s_files

https://developer.apple.com/documentation/appkit/nscolor/1524856-controlcolor
https://developer.apple.com/documentation/appkit/nstextfield
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files
https://developer.apple.com/documentation/uikit/protecting_the_user_s_privacy/encrypting_your_app_s_files

36 | P a g e

WebOrion Cyber Security Solutions -

Unsecure and poor cryptographic protocols

Severity LOW

OWASP MASVS: 3.3 [L1, L2]

AV:L/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

Vulnerability Unsecure and poor cryptographic protocols

Finding

Description

A weak cipher is defined as an encryption/decryption algorithm that is unsafe, and

likely because it uses a key of insufficient length. Using an insufficient length for a

key in an encryption/decryption algorithm opens up the possibility for that encryption

scheme to be cracked So in general, the larger the key size the stronger the cipher.

Weak ciphers usually use key sizes that are not less than 128 bits in length.

Method of

Identification

and

Validation

Manual

Affected

Resources

N/A

Affected

Parameter

N/A

Evidence N/A

This is just informational purpose. No major risk is there. But should be

corrected.

37 | P a g e

WebOrion Cyber Security Solutions me ee - g pp ca on

Technical

Impact

A weak cipher is defined as an encryption/decryption algorithm that uses a key of

insufficient length. Using an insufficient length for a key in an encryption/decryption

algorithm opens up the possibility (or probability) that the encryption scheme could

be broken (i.e. cracked).

Business

Impact

N/A

Remediation

For Application Developers,

Just implement and use strong cipher suite.

For more information,

https://developer.apple.com/videos/play/wwdc2019/709/

https://developer.apple.com/library/archive/documentation/Security/Conceptual/Sec

ureCodingGuide/Introduction.html

https://developer.apple.com/documentation/security

https://developer.apple.com/library/archive/documentation/Security/Conceptual/cry

ptoservices/SecureNetworkCommunicationAPIs/SecureNetworkCommunicationAP

Is.html

https://developer.apple.com/videos/play/wwdc2019/709/
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/documentation/security
https://developer.apple.com/library/archive/documentation/Security/Conceptual/cryptoservices/SecureNetworkCommunicationAPIs/SecureNetworkCommunicationAPIs.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/cryptoservices/SecureNetworkCommunicationAPIs/SecureNetworkCommunicationAPIs.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/cryptoservices/SecureNetworkCommunicationAPIs/SecureNetworkCommunicationAPIs.html

38 | P a g e

WebOrion Cyber Security Solutions -

7. Our recommendations

 Refer Apple security standards and new security methods for

implementing strong app.

 Upgrade to latest packages, security updates and configurations for better

security.

 Make sure to check for business logic remains confidential to respected

company, it should not be leaked in any forms, whether it is application

or website.

 App needs to store user preferences and other default settings in order to

run seamlessly, so make sure you’ve make encryption for this purpose. In

other words make sure that app configurations is encrypted using strong

encryption methods.

 Do not allow insecure source, in which app is loaded from there,

respectively.

 As apple announce, in 2017, a security update to Apple’s operating

systems removed support for SHA-1 signed certificates used for Transport

Layer Security (TLS) in Safari and Web Kit. Make sure to use SHA-256

signed certificates.

 ATS establishes best-practice policies for secure network communications

using Apple platforms, employing Transport Layer Security (TLS) version

1.2, forward secrecy, and strong cryptography. So make sure you don’t

forgot to implement this!

 To prevent app modification, implement self-defense mechanism to make

your app more secure. Which prevents unknown users to make any

system level changes. And don’t allow your app to be run on Jail-broken

devices, which will risks your business!

